研究队伍
当前位置:首页 > 研究队伍  
院士
杰青优青
正高级人员
副高级人员
中级人员
特别研究助理
博士后流动站
 
研究队伍
姓 名:
石广玉
性    别: 
职 务:
 
职    称:
研究员
通讯地址:
中国北京市中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室
邮政编码:
100029
电子邮件:
shigy@mail.iap.ac.cn
个人主页:
 
 
 简历:
    中国科学院院士,研究员,男。1942年10月生于山东省淄博市淄川区,1968年毕业于山东大学物理系,1982年2月获日本东北大学理学博士学位。曾先后在美国大气与环境研究公司、纽约州立大学大气科学研究中心、澳大利亚联邦科学与工业研究组织(CSIRO)、日本东京大学气候系统研究中心、日本千叶大学环境遥感研究中心及日本综合地球环境学研究所等地做过访问学者或客座教授。先后担任联合国环境署全球环境机构科学技术顾问团(STAP,GEF/UNEP)专家(1993年开始),联合国环境署大气棕色云团(UNEP-ABC)计划科学委员会委员兼中国工作组组长(2003年开始),国际IGBP-SOLAS SSC 委员兼IGBP 中国全国委员会常务委员、SOLAS 工作组组长(2004年开始),国际气象与大气科学协会-国际辐射委员会(IRC)-亚太辐射委员会主席(2007年开始)。中国科学院研究生院、兰州大学、南京信息工程大学、云南大学、东华大学兼职教授,中国科学院地球环境研究所、安徽光学精密机械研究所兼职研究员;中国科学院大气物理研究所学位委员会及学术委员会委员;《大气科学进展》(AAS)、SOLA、《大气科学》编委;美国地球物理学会、中国空间学会、中国太阳能学会、北京气象学会会员。主要从事大气辐射及全球(气候)变化的理论和观测研究。发表论文、重要学术会议报告200余篇(其中SCI (E) 63篇),被SCI (E) 收录引证1695次(他引1167 次);完成著作2部,参与著作编写12部。培养博士、硕士研究生34人,担任过博士后4人的合作导师。1994年中国气象学会全国气象科普优秀作品特别奖(《地球在变暖》);1998年,以“k-分布大气辐射模式的研究”,获中国科学院自然科学奖 二等奖(排名第一);2007年,获日本气象学会藤原奖;2008年中国科学院教学成果奖 二等奖(《大气辐射学》);以及中国科学院研究生院人才培养的多个奖项。
代表性成果如下:
1、创建了一个完整的k-分布(吸收系数分布)大气辐射模式。比较完满地解决了大气辐射计算所遇到的必须同步处理吸收和散射、波长积分、天顶角角度积分以及沿非均匀路径的光学路径积分等问题,特别是兼顾到了模式本身的物理意义、计算精度以及计算效率等。模式已被国内外多家院校及研究单位采用,如日本东北大学、CSIRO、哈佛大学、中科院大气所等。
2、系统性地研究了大气温室气体和气溶胶的辐射强迫和气候效应,并取得创新性研究成果。最早开展了南极臭氧洞的辐射问题研究,从辐射能收支的角度对南极臭氧洞成因的研究提供了启示。研究开发了辐射-对流气候模式和箱室-扩散大气-海洋能量平衡模式,并利用区域和全球大气环流模式全面研究了大气温室气体以及大气气溶胶的气候辐射强迫效应。模式计算的大气CO2和其它温室气体的辐射强迫,得到国际学术界公认,已有6篇论文被IPCC(政府间气候变化专门委员会)科学报告多次引用。
3.大气气溶胶和大气气体成分的野外观测研究。在我国开展了大气气溶胶和臭氧垂直分布的高空气球观测,首次取得了华北地区0-33 公里的大气O3 和气溶胶垂直分布廓线;系统地开展了沙尘等大气气溶胶光学特性的观测研究,从1990年代中期开始,在中国建立了多个气溶胶、辐射野外观测站,研究结果为气溶胶气候效应的研究和大气输送模式的验证提供了最基本的数据;主持完成了国家自然科学基金重大项目“上层海洋-低层大气生物地球化学与物理过程耦合研究”,利用出海船舶和岛屿平台将沙尘气溶胶的观测研究扩展到中国近海,并利用卫星资料分析了中国近海初级生产力的分布变化状况,从地球生物化学反馈的角度看待沙尘气溶胶对于地球气候系统的长期影响。在此期间,与日本和韩国同行以及IGBP密切合作,推动了国际SOLAS框架下亚洲沙尘与海洋生态系统特设工作组(ADOES)的建立。

 研究领域:
 

 

大气辐射及全球(气候)变化的理论和观测研究


 社会任职:
 

 获奖及荣誉:
 

发表论文、重要学术会议报告200余篇(其中SCI (E) 63篇),被SCI (E) 收录引证1695次(他引1167 次);完成著作2部,参与著作编写12部。培养博士、硕士研究生34人,担任过博士后4人的合作导师。1994年中国气象学会全国气象科普优秀作品特别奖(《地球在变暖》);1998年,以“k-分布大气辐射模式的研究”,获中国科学院自然科学奖 二等奖(排名第一);2007年,获日本气象学会藤原奖;2008年中国科学院教学成果奖 二等奖(《大气辐射学》);以及中国科学院研究生院人才培养的多个奖项。V


 代表论著:
 

 

1.Shi G.-Y., An Accurate Calculation and Representation of the Infrared Transmission Function of the Atmospheric Constituents, Ph. D thesis, 1981, pp191.

2.Shi G.-Y., The Cooling Rate Due to 9.6μm Ozone Band-A New Approximation. Scientia Sinica (Series B), 1984, 27(No.9), 947 -957.

3.Shi G.-Y., Radiative Forcing and Greenhouse Effect Due to the Atmospheric Trace Gases. Science in China Series B-Chemistry, 1992, 35(No.2), 217-229.

4.Shi G.-Y., Wang W C, Ko M K W and Tanaka M, Radiative Heating due to Stratospheric Aerosols over Antarctica. Geophysical Research Letters, 1986, 13(No.12), 1335 -1338.

5.Shi G.-Y., L. Xu, W. X. Lu, L. X. Ren, R. G. You, M Takagi, A. Yiwata, and Morita, Balloon Observation of Vertical Distribution of Ozone and Aerosol in Atmosphere From 0 to 33 Km. Chinese Science Bulletin, 1987, 32(No.16), 1125-1129.

6.Shi G.-Y., Wang H., Wang B., Gong S.-L., Zhao T.-L., Li W. and Aoki T., Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. Journal of the Meteorological Society of Japan, 2005, 83A, 333-346.

7.Shi G.-Y. and Zhang H., The relationship between absorption coefficient and temperature and their effect on the atmospheric cooling rate, Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 105, 459-466.

8.Shi G.-Y., Hayasaka T., Ohmura A., Chen Z.-H., Wang B., Zhao J.-Q., Che H.-Z., Xu L., Data Quality Assessment and the Long-Term Trend of Ground Solar Radiation in China. Journal of Applied Meteorology and Climatology, 2008, 47, 1006-1016.

9.Shi G.-Y., Wang B., Zhang H., et al. The Radiative and Climatic Effects of Atmospheric Aerosols. Chinese Journal of Atmospheric Sciences. 2008, 32(4):826-40.

10.Shi G.-Y., Xu N., Wang B., Dai T., Zhao J.-Q., An improved treatment of overlapping absorption bands based on the correlated k distribution model for thermal infrared radiative transfer calculations. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(No.8), 435-451.

11.Shi G.-Y., Tan S.-C., Chen B, Environmental and Climatic Effects of Mineral Dust and Bio-aerosol. Chinese Journal of Atmospheric Sciences. 2018;42(3):559-69.

12.石广玉,《大气辐射学》,科学出版社,2007,北京.

13.石广玉,檀赛春. 2007.大气气溶胶及其气候效应. 科学观察. 2(5):39-39.

14.石广玉,王标,张华,赵剑琦,檀赛春,温天雪. 2008. 大气气溶胶的辐射与气候效应.大气科学, 32(4),826-840

15.石广玉,戴铁,徐娜. 2010. 卫星遥感探测大气 CO2 浓度研究最新进展. 地球科学进展,25(1): 7-13.

16.石广玉,戴铁,檀赛春,申彦波,王标,赵剑琦. 2010. 全球年平均人为热释放气候强迫的估算. 气候变化研究进展, 6(2):119-122.

17.Zhang H. and Shi G.-Y., An Improved Approach to Diffuse Radiation. J. of Quantitative Spectroscopy & Radiative Transfer, 2001, 70, 367-372.

18.Zhang H. and Shi G.-Y., Numerical explanation for accurate radiative cooling rates resulting from the correlated k distribution hypothesis. J. of Quantitative Spectroscopy & Radiative Transfer, 2002, 74, 299-306.

19.Zhang H. and Shi G.-Y., A new approach to solve correlated k-distribution function, J. of Quantitative Spectroscopy & Radiative Transfer, 2005, Vol. 96(2), 311-324.

20.Zhang H., Shi G.-Y., Nakajima T., Suzuki T., The effects of the choice of k-interval number on radiative calculations, J. of Quantitative Spectroscopy & Radiative Transfer, 2006, 98(1), 31-43.

21.Tan S.-C. and Shi G.-Y., Satellite remote sensing for oceanic primary productivity. Advance in Earth Sciences. 2005, 20(8):863-70.

22.Tan S.-C. and Shi G.-Y. Remote Sensing for Ocean Primary Productivity and Its Spatio-temporal Variability in the China Seas. Acta Geographica Sinica. 2006, 61(11):1189-99.

23.Tan S.-C., Shi G.-Y., Spatiotemporal variability of satellite-derived primary production in the South China Sea, 1998-2006. Journal of Geophysical Research- Biogeosciences, 2009, 114, G03015

24.Tan S.-C., Shi G.-Y., Wang H. Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas. Atmospheric Environment. 2012, 46:299-308.

25.Dai T., Shi G.-Y., Zhang X.-Y., Effect of HITRAN Database Improvement on Retrievals of Atmospheric Carbon Dioxide from Reflected Sunlight Spectra in the 1.61-μm Spectral Window. Adv. Atmos. Sci., 2012, 29(2): 227-235, doi: 10.1007/s00376-011-0168-7.

26.Dai T., Shi G.-Y., Zhang X.-Y, Xu N., Influence of the HITRAN Database Updates on the Retrievals of Atmospheric CO2 from Spectra in the Near-Infrared Regions. Acta Meteor. Sinica, 2012, 26 (5), 629-641, doi: 10.1007/s13351-012-0507-3.

27.Dai, T., Shi, G., and Nakajima, T., Analysis and evaluation of the global aerosol optical properties simulated by an online aerosol-coupled non-hydrostatic icosahedral atmospheric model, Advances in Atmospheric Sciences, 32, 743-758, 10.1007/s00376-014-4098-z, 2015.

28.Dai, T., Goto, D., Schutgens, N. A. J., Dong, X., Shi, G., and Nakajima, T.: Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core, Atmospheric Environment, 82, 71-82, http://dx.doi.org/10.1016/j.atmosenv.2013.10.018, 2014a.

29.Dai, T., Schutgens, N. A. J., Goto, D., Shi, G., and Nakajima, T.: Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model, Environmental Pollution, 195, 319-329, http://dx.doi.org/10.1016/j.envpol.2014.06.021, 2014b.

30.Dai, T., Cheng, Y., Zhang, P., Shi, G., Sekiguchi, M., Suzuki, K., Goto, D., and Nakajima, T.: Impacts of meteorological nudging on the global dust cycle simulated by NICAM coupled with an aerosol model, Atmospheric Environment, 190, 99-115, 10.1016/j.atmosenv.2018.07.016, 2018.

31.Dai, T., Cheng, Y., Goto, D., Schutgens, N. A. J., Kikuchi, M., Yoshida, M., Shi, G., and Nakajima, T.: Inverting the East Asian Dust Emission Fluxes Using the Ensemble Kalman Smoother and Himawari-8 AODs: A Case Study with WRF-Chem v3.5.1, Atmosphere, 10, 10.3390/atmos10090543, 2019a.

32.Dai, T., Cheng, Y., Suzuki, K., Goto, D., Kikuchi, M., Schutgens, N. A. J., Yoshida, M., Zhang, P., Husi, L., Shi, G., and Nakajima, T.: Hourly Aerosol Assimilation of Himawari-8 AOT Using the Four-Dimensional Local Ensemble Transform Kalman Filter, Journal of Advances in Modeling Earth Systems, 11, 680-711, 10.1029/2018ms001475, 2019b.

33.Cheng, Y., Dai, T., Goto, D., Schutgens, N. A. J., Shi, G., and Nakajima, T.: Investigating the assimilation of CALIPSO global aerosol vertical observations using a four-dimensional ensemble Kalman filter, Atmos. Chem. Phys., 19, 13445-13467, 10.5194/acp-19-13445-2019, 2019.

34.Yin, X., Dai, T., Schutgens, N. A. J., Goto, D., Nakajima, T., and Shi, G.: Effects of data assimilation on the global aerosol key optical properties simulations, Atmospheric Research, 178-179, 175-186, 10.1016/j.atmosres.2016.03.016, 2016a.

35.Yin, X., Dai, T., Xin, J., Gong, D., Yang, J., Teruyuki, N., and Shi, G.: Estimation of aerosol properties over the Chinese desert region with MODIS AOD assimilation in a global model, Advances in Climate Change Research, 7, 90-98, 10.1016/j.accre.2016.04.001, 2016b.

36.Liu, Y., Jia, R., Dai, T., Xie, Y., and Shi, G.: A review of aerosol optical properties and radiative effects, Journal of Meteorological Research, 28, 1003-1028, 10.1007/s13351-014-4045-z, 2015.

37.Lyu, H., Dai, T., Zheng, Y., Shi, G., and Nakajima, T.: Estimation of PM2.5 Concentrations over Beijing with MODIS AODs Using an Artificial Neural Network, Sola, 14, 14-18, 10.2151/sola.2018-003, 2018.

38.Tan S, Han Z, Wang B, Shi G. Variability in the correlation between satellite-derived liquid cloud droplet effective radius and aerosol index over the northern Pacific Ocean. Tellus Series B-Chemical and Physical Meteorology. 2017;69.

39.Tan S, Zhang X, Shi G. MODIS Cloud Detection Evaluation Using CALIOP over Polluted Eastern China. Atmosphere. 2019, 10(6).

40.Zhang X, Tan S, Shi G. Comparison between MODIS-derived day and night cloud cover and surface observations over the North China Plain. Advances in Atmospheric Sciences. 2018, 35(2):146-57.

41.Zhang X, Tan S, Shi G, Wang H. Improvement of MODIS cloud mask over severe polluted eastern China. Science of the Total Environment. 2019, 654:345-55.

42.Zhang X, Wang H, Che H, Tan S, Shi G, Yao X. The impact of aerosol on MODIS cloud detection and property retrieval in seriously polluted East China. Science of the Total Environment. 2020;711.

43.戴铁,石广玉,漆成莉,徐娜,张兴赢,杨溯. 2011. FY-3 气象卫星 IRAS 探测大气 CO2 浓度的 通道敏感性分析. 气候与环境研究,16(5):577-585。

44.戴铁,郑有飞,石广玉. 2008. 利用红外辐射光谱反演大气CO2浓度的理论研究. 气象与环境科 学,31(1): 1-5.

45.徐娜,石广玉,戴铁.2011.大气气体吸收带重叠对CO2辐射效应的影响.气候与环境研究, 16(4): 441-451.

46.陈兵,石广玉,戴铁,申彦波,王标,杨溯,赵剑琦. 2011. 中国区域人为热释放的气候强迫. 气候与环境研究,16(6):717-722.


 承担科研项目情况:
 

基金委重大项目“中国典型地区云系结构与辐射气候效应研究”